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The analogy between the Gambler's Ruin problem and the statistics of loops and bridges in the 
amorphous region of lamellar semicrystalline polymers was first recognized by Guttman et al. Results for 
the loop and bridge distribution compare very well with recent data from Monte Carlo calculations. 
However, when the molecular weight of the polymer is low, a substantial part of the amorphous region is 
filled by cilia and free polymer. We examined their relative importance by adapting the matrix formalism 
developed by DiMarzio and Rubin. The Gambler's Ruin results are recovered for high molecular weight 
polymer. In addition it will be shown that the effect of the temperature (chain stiffness) can be simulated 
by rescaling the steplength of a random walk chain. Mean field theories incorporate segment-solvent 
interactions and allow for non-uniform segment densities by weighting each step according to the local 
concentrations. Using these weighting factors, we find deformation to be controlled by energetic 
interactions rather than by entropy. At large strain a "necking' process occurs. However, in the presence 
of a good solvent, the material is soft and flexible. 

(Keywords: amorphous polymer; semicrystalline polymer; polymer deformation; random walk statis- 
tics; mean field theory; gambler's ruin) 

INTRODUCTION 

A theoretical analysis of the properties of the amorphous 
component of a semicrystalline polymer must be based 
upon the recognition that the crystalline regions 
introduce surfaces which are impenetrable to the material 
residing within the amorphous regions. Four types of 
amorphous polymeric material can be identified: bridges, 
whose end segments are attached to opposing crystal 
surfaces; loops, whose end segments are attached to the 
same crystal surface; cilia, which have one end segment 
attached to a crystal surface and one unattached end 
segment; and floating chains, which have both end 
segments unattached. In 1975, Pettracone e t  al .  ~ 

calculated the birefringence-strain behaviour of cilia, 
loops and bridges. In 1978 Lohse and Gaylord 2 calculated 
the modulus behaviour of all four chain types. The 
birefringence calculations were discrete and used both the 
matrix method of DiMarzio and Rubin a for a random 
walk on a cubic lattice and a Monte Carlo analysis for a 
random walk on a tetrahedral lattice incorporating the 
rotational isomeric state scheme. The modulus calcu- 
lations were continuum and used the method of images 4'5 
with the RIS scheme incorporated. None of the calcula- 
tions considered segment-segment interactions or 

segment-crystal surface interactions and both treatments 
took the crystal surfaces to be mathematically absorbing 
barriers. In each paper, it was pointed out that the 
analyses were single chain analyses and that knowledge of 
the numbers and contour length distributions of the four 
chain types was needed in order to calculate the total 
behaviour of the amorphous regions. 

These quantities clearly will depend on the crystal- 
lization process. Unfortunately, melt crystallization is a 
complex process which is not yet fully understood. There 
is however, one ideal situation: instantaneous crystal- 
lization. For this hypothetical process three profound 
insights have recently been made. The first insight, by 
Flory and Yoon 6, is that the topology of the chains in the 
original melt state must be conserved during the crystal- 
lization process. The second insight, by Guttman, 
DiMarzio and Hoffman 7's, is that the numbers and 
contour lengths of each of the chain types in the final 
amorphous region can be determined by a consideration 
of the gambler's ruin with renewal problem. The third 
insight, by Rubin 9, is that a random walk between 
mathematically absorbing boundaries with renewal is 
equivalent to a random walk between reflecting 
boundaries. We will use these insights to analyse the 
amorphous region of an instantaneously melt crystallized 
semicrystalline polymer in detail. 
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MATHEMATICAL PRELIMINARIES 

Recently, two nearly identical lattice theories have been 
developed ~°-12 which extend the DiMarzio and Rubin 
matrix formalism for ideal chains between a pair of 
parallel, impenetrable surfaces with segment-surface 
interaction a, by incorporating segment-solvent inter- 
actions via a mean field analysis. We will give only a brief 
description of these theories here (for full details, see 
original papers 1 o-12). 

We define a lattice composed of layers i=0,  1, 2, 
3 ..... M , M +  1, each layer containing L lattice sites. The 
coordination number of lattice is z. We call the fraction of 
nearest neighbour lattice sites which are in the same layer 
20 and the fractions which are in adjacent layers 2 _ 1 and 
21 (e.g., for a cubic lattice: z = 6; 2o = 2/3; 2_ 1 = 21 = 1/6). 
In the lattice system we have n polymer chains, each 
having r segments and n o holes (or solvent molecules). 
Therefore 

n° + n r = M L  (1) 

Rather than working with the actual number of 
polymers, we will work with the following volume frac- 
tions in each layer i: 

?Pi = ni/L; ~b ° = n°/L (2) 

where n~ and n ° are the number of segments and holes, 
respectively, in layer i. 

We first examine the chain statistics of the lattice 
system. A chain is built up by joining previously 
unattached monomer units, numbered s=  I . . . . .  r. We 
start with a 'free segment' or monomer. The probability of 
finding this segment in layer i is given by the free segment 
probability Pi- A second segment must now be attached to 
the first one and therefore its location is restricted to either 
a preceding layer, a succeeding layer or the same layer as 
the first segment. The probabilities of this segment being 
in these locations are 2_lp(i,  1)pi-1, 21P(i, 1)Pi+I and 
2op(i, 1)pi, respectively. (Note: p(i, 1)=p~). We now define 
the end segment probability p(i, 2) as the probability of 
findin~ the end ofa  dimer in layer i. This quantity is given 
by: 

p(i, 2)= {p( i -1 ,  1)2_ 1 +p(i, 1)2o+p(i+ 1, 1)21}pi (3) 

Continuing this analysis for all r segments of the chain, 
we obtain r - 1  recurrent relations having the general 
form: 

p(i, s + 1)= {p ( i -  1, s)2_ 1 +p(i, s)2 o +p(i + 1, s)21 } p~ 
(4) 

to be performed for all layers i. These recurrent relations 
can be arranged in a matrix: 

p_(s)==wp_(s- 1) (5) 

p(1,s) 

p(2, s) 

p(i, s) 

p ( M -  1,s) 

p(M,s) 

2 _ lP2 

2-1Pi 

2-tPM-a 

(2 _ 1 "l- r21 )PM 

(2o + ~2_~)pl 

2oP2 

2oPi 

So w is a M x M tri-diagonal band matrix and p_(s- 1) 
and p(s) are vectors having M elements. We have 
introduced ~ and fl in order to handle the boundary 
conditions. When ~ = fl =0  we have mathematically ab- 
sorbing boundaries and thus no segments can physically 
reside in layers 0 or M + 1. In this case the matrix is 
identical to that used by both Scheutjens and Fleer (SF) 
and Levine, Thomlinson and Robinson (LTR). 

When ~ = l  and f l=0  there are mathematically 
reflecting boundaries situated midway between the layers 
0-1 and M -  M + 1. (The ~ = 0 and fl = 1 case has reflecting 
boundaries located at layer 1 and M. We will not use this 
last condition in this paper). We note that the matrix 
formalism above allows both multiple occupancy of 
lattice sites and backfolding by chain segments. 

We will now examine the free segment probability p~. 
The value of p~ is given by the following relation: 

p,=Aq~°e x(+,-*f> (7) 

The quantity In p~ is essentially a potential arising from 
the segments themselves. The ~b ° term in equation (7) is the 
fraction of sites in layer i that are not occupied by other 
segments. This is an entropic quantity. The exponent in 
equation (7) accounts for energetic quantities. They are 
weighting factors based on segment-hole interactions. In 
the SF theory, an averaging of the segment-hole inter- 
actions over the three consecutive layers is done and 

(x i )  = 2 _ lx i -  1 +2oXi +21xi + 1 (8) 

In the LTR theory, no averaging is done and (xi)  = xi Z is 
the segment-hole interaction parameter defined by: 

z 
X = ~ -  (~op -- 1/2(coo ..~_ 8pp)) (9) 

e stands for the gain or loss of enthalpy for various types of 
contacts in the system: pp=segment-segment; p o =  
segment-hole; oo=hole-hole.  The quantity A is a 
normalization constant (this will be discussed later). 
Starting with the free segment probability p(i, 1)= p~ we 
can calculate the end segment probability p(i, s) using the 
recurrent relation (5). We than collect these probabilities 
in a matrix p: 

p(l, I) 

p= p(i, 1) 

p(M, 1) 

p(1,2) . . '  p(1, s) 

p(i, 2) p(i, s) 

p(M, 2) .-. p(M,s)  

• " - p ( l , r )  

p(i, r) 

• .. p(M,r) 

(lO) 

2oPM- 1 

(2 o + ~21 )PM 

(21 + P 2 - 0 p l  

21P2 

21pi 

21PM-1 

X 

~(1, s -  1) 

~(2, s -  1) 

~(i, s -  1) 

~ ( M -  1, s -  11 

~(M, s -  1) 

(6) 
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The elements of matrix p= provide all of the information 
necessary to calculate the properties of the system. The 
density profile made up by the chains in the system is 
determined using the general composition formula ~°: 

r 

q~i = B(1/p,) ~ p(i, s)p(i, r -  s + 1) (1) 
S = I  

where B is a normalization constant. The p(i, s) and 
p(i, r -  s + 1) quantities represent two connected 
subchains. The divisor p~ is present because the subchains 
share one overlapping segment. After determining the 
total segment density profile of all the chains in the system 
we then recalculate the free segment probability using 
equation (7). We perform this computation iteratively, 
until a self consistent density profile is obtained (i.e. until 
resubstitution of a tk~ produces the same value of ~bi). This 
defines the equilibrium state of the system. 

M O D E L L I N G  THE AMORPHOUS PHASE 
OF A MELT CRYSTALLIZED POLYMER 

As stated in the introduction, for the instantaneous melt 
crystallization process proposed by Flory and Yoon 6, 
Guttman et al. 7'a have used the results of the classical 
gambler's ruin with infinite renewal problem to calculate 
the numbers and contour length distribution of bridges 
and loops formed in the amorphous regions of the 
semicrystalline polymer. Their calculations apply only 
to a system of infinitely long chains. We will use the matrix 
method described above to extend the gambler's ruin 
analysis to a system of finite chains. 

First we examine the initial melt state, in which the 
density is constant. Then the volume fractions in every 
layer are: c ~ = c ~ , = n r / M L  and ~b°=l-~b, .  Using the 
following normalization for pi in equation (7): 

1/A = (1 - th,)e x(2~.- l) (12) 

While the normalization n/Ip(r)  is ch,/r, i.e. the 
contribution of one segment to an average density. The 
result is a constant density q~i=q~, for all i and no 
iterations are necessary. 

This lattice result is in agreement with the continuum 
analysis of a floating chain between reflecting 
boundaries 13. 

Now we examine the polymer just before 
crystallization. It is assumed that the melt will crystallize 
in the layers i < 1 and i>  M with no movement of the 
chains in the amorphous region during the crystallization 
process. Thus, the constant density feature greatly 
simplifies our calculations of the contour length 
distributions of the chain parts in the amorphous region, 
which are illustrated in Figure 1. 

In order to examine the chain parts in this region, one 
quantity that must be known is the so-called free chain 
probability. This is the probability of finding a chain 
which has all of its segments between layer 0 and M + 1 
and none of its segments in those 2 layers. This quantity is 
calculated by placing mathematically absorbing 
boundaries on 0 and M + I .  Mathematically, we set 
ct = fl--0 in equation (5). The free chain can start in any 
layer other than 0 and M + 1 and so the following starting 
vector is used: p_f(1)T=(1, 1 . . . . .  1). (We use the same 
normalization for pi as given in equation (12)). Performing 
r -  1 matrix multiplications of equation (5) yields a matrix 
containing p~(i, s) elements (i= 1 . . . . .  M; s=  1 . . . . .  r): 

p=,= 

I1 pf(1,2) ... pf(1,s) . - - p r O , r  ) 

,1 1 "" pf(2, s) ""  pf(2, r) 

l "'" pf(i,s) "'" pr(i,r) 

1 "" p f ( M -  1, s) "" p f ( M -  I, r) 

1 pf(M,  2) " ' "  p f ( M , s )  "'" p f (M,r )  

(14) 

then produces a free segment probability Pl = 1 for all i. 
This means that all of the segments 'feel' the same 
potential at each position in the system. We now use the 
matrix method. We assign reflecting boundary conditions 
(~= 1, fl=0) with this starting vector: p(i, 1)=pi= 1 for 
all i. 

Because of the reflecting character of the boundaries, 
the segments do not feel any physical boundary, and 
therefore the segments will have no preferential direction 
to go. Mathematically we observe that p(i, s) is equal to 1 
for all i, s. 
S o ,  

M M 

p(r)= ~ p(i,r)= Z p(i,s)=M 
i = 1  i = 1  

showing that the probability of finding any segment 
between the boundaries is equal. The density can be 
calculated with the following composition formula: 

n ~ p ( i , s ) p ( i , r - s + l )  (13) 
(a, = Ip(r)p, s= , 

The number of free chains is given by the probability 
(M ~ i  = 1 pf(i, r)) of finding a free chain between layer 0 and 
M + 1 divided by the probability of finding any chain in 
this region multiplied by the number of chains in this 
region: 

n f~" = n pf(i, r) p(i, r) = pf(r)n/M 
i = 1  i 

(15) 

The number of cilia of length s is equal to twice the 
probability of finding a free chain end of length s ending in 
layer 1 times the probability of passing the boundary 2 _ 1 

Loop~ Bridge 
Cilium Flooting choin 

Figure I Chain parts between two boundaries 
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multiplied by n/M. There is a factor of two because there 
are two chain ends. Mathematically, 

n s  cilia = pf(1,s)212n/M (16) 

The numbers of loops and bridges having length s, is 
calculated by determining the probability of finding a 
chain part starting in layer 1 and being in either layer 1 or 
M after s steps. 

The starting vector if(D r=  (1, 0, 0 . . . . .  0) accounts for 
the fact that the first gegment is in layer 1 (c =cilium). 
Performing the matrix multiplications of equation (5) 
while ~ = f l = 0 ,  gives end segment probability matrix p°: 

p C =  
m 

1 pC(l, 2) 

0 if(2, 2) 

0 0 

0 0 

• . .  p ° ( 1 ,  s )  

• " p¢(2, s) 

• "" p¢(i,s) 

• "" i f (M,  s) 

• "" p¢(1, r) 

• "" if(2, r) 

• " p¢(i,s) 

• .. i f (M,  r) 

(17) 

Only the first and last row are needed in order to calculate 
the number of loops and bridges of length s. 

loop = p C ( l ,  s)2 _ 12 l(r  - s - 1) r/s 
M 

(18) 

pf(i,s). This is calculated using the starting vector 
Pr(i, 1)=pi for all i and also absorbing boundary con- 
ditions. We collect the results of the matrix procedure in 
the matrix pf(i, s). 

Using the ~ and ~ matrices, we calculate the volume 
fractions of tile various chain types from the following 
relations: 

~b/fl°at ~-- nrr~e/(Lpf(r)Pi) i pf(i, s)pf(i, r - s + 1) (20) 
s = l  

r - - 1  

q~ilia= E {nZsilia/(Lp¢(s)Pi) 

x i [P¢(i ,k)pt( i ,s-k+l)]} (21) 
k = l  

r - 2  

~b~ p= ~ {n~P/(Lff(1,s)P,) 
S = !  

x ~ [pC(i, k)ff(i, s -  k + 1)]} (22) 
k = l  

r - - 2  

¢~/bridg©= E {n~rag=/(Lff(M,s)P,) 
s=M 

× ~ [ p ¢ ( i , k ) p ¢ ( M - i + l , s - k + l ) ] }  (23) 
k = l  

where 
M M 

pC(s) = ~ pC(i, s) and pf(r)= ~ pr(i, r) (24) 
i=1  I=1 

/1 
nb ,~=p¢(M,  s ) 2 _ 1 2 _ l ( r - s -  1) ~ (19) 

where the r -  s -  1 terms represent the number of ways of 
forming a loop or a bridge having s segments from a chain 
consisting of r -  2 segments. (2 extra segments are needed 
for both ends of a loop or bridge). A loop or bridge of s 
segments is passing the boundary between layer 0-1 with 
its 0th segment (probability is 2_ 1) and its s + lth segment 
is passing the boundary 1-0 (21) respectively M - M  + 1 
(2_ 1). The boundary between layer M - M  + 1 will pro- 
duce a same number of loops, bridges and cilia. So the 
total number of loops, bridges and cilia are twice the 
numerical values as given in equations(16, 18, 19). SF 
calculate their chain part distributions for an arbitrary 
density profile. Their results reduce to ours when a flat 
density profile is used. 

We now examine the final semicrystalline state. After 
crystallization we have real, impenetrable crystal surfaces 
in layer 0 and M + 1 and a system of permanent loops, 
bridges, cilia and floating chains between mathematically 
absorbing barriers. These chains have the same contour 
length distributions previously calculated for loops, bri- 
dges, cilia and free chains respectively, between reflecting 
boundaries• In order to calculate the volume fractions of 
these permanent chain species, the following end segment 
probabilities must be known: 

(1) The end segment probabilities of a chain having its 
first segment adsorbed at a surface. We use the starting 
vector ff(1) 'r=(pl,0,0 . . . .  ) and perform r - 1  matrix 
multiplications of equation (5) with ~ = f l = 0  to get the 
if(i, s) matrix• 

(2) The end segment probabilities of a floating chain, 

From equations (21-23) we can calculate the total seg- 
ment density profile of the loops, bridges and cilia 
emanating from the surface situated at layer 0. The loops, 
bridges and cilia emanating from the other surface will 
display a total density profile which is a mirror image 
(with respect to a plane of symmetry midway between the 
two walls) of the calculated profile. The two profiles added 
together with the profile calculated for floating chains will 
then give the total density profile of the amorphous region 
of the semicrystalline polymer (see Figure 4). Equation (7) 
implicitly assumes that there is no energetic difference 
between a segment-crystal and a segment-segment con- 
tact. This is reasonable when both regions are com- 
prised of the same sort of segments and the densities of the 
crystalline and the amorphous regions are not too 
disparate. The use of equation (7) does indeed produce a 
constant self consistent density profile when the computer 
calculations are performed and again, no iterations are 
necessary. 

CHAIN STIFFNESS EFFECTS 

Temperature effects can readily be studied once chain 
stiffness is introduced into the matrix formulation. This 
can be done in the manner suggested by Rubin and 
DiMarzio a. We will illustrate the procedure for the case of 
a cubic lattice system, using a modified form of equation 
(5) and referring to Figure 2. 

In the flexible chain case, it suffices to know the position 
of segment s in layer i in order to calculate the position of 
segment s + 1 (see equation (3)). However, incorporation 
of stiffness requires reference to an additional segment 
( s -  1). The M component vector p in equation (5) then 
becomes a 6M component vector. A typical end segment 
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probability vector can be written as p(i,j, s) where i=  
1 ..... M ; j = I , . . . , 6  and s = l  ..... r. In words it gives the 
probability of finding the end ofa  s-mer in layer i, while its 
previous segment ( s -1 )  is in the - j  direction. (If j = 4 ,  
then - i = 2). 

The 2 9, 2_1 and 2_ 1 elements of the transition matrix 

equation (5) are replaced by the following submatrices: 

_1= 

0 0 0 0 0 0 

L S  L B  L L  

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

2o= 

S L B  L L L  

0 0 0 0 0 0 

B L S  L L L  

0 0 0 0 0 0 

L L L L S B 

L L L  L B S  

21= 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

L B  L S  L L  

O 0  O 0  O 0  

O 0  O 0  O 0  

(25) 

Referring to Figure 2, the quantities L S and B are the 
probabilities of a segment being oriented at an angle of 
90 °, 180 ° and 0 ° respectively, with respect to the preceding 
two segments. These probabilities are given by: 

and e', e s, e b are the appropriate energies associated with L, 
S, B conformation. 

Now that our transition matrix is defined, we can 
calculate the conformational properties of chains 
incorporating short range interactions. To illustrate the 
procedure we will calculate the density profile of the melt 
again. Using the starting vector p(i,j, 1)=pi/6 for 
i = l  ..... M and j = l  ..... 6, the calculation of the end 
segment probabilities requires r - 1  matrix multi- 
plications (with reflecting boundary conditions) of equa- 
tion (5), with equation (25) replacing the 2 quantities 
therein. However, since stiffness is only defined by the 
location of three consecutive segments, the first matrix 
multiplication uses L=B = S =  1/6, while the remaining 
r - 2  multiplications use the L B, S as given in equation 
(26). In order to use the end segment probabilities in the 
volume fraction calculation, it is necessary to devise a 
composition law for the connection of the s and the 
r -  s + 1 subchains from which the entire r chain is formed. 
In general for a semiflexible chain, it is necessary that there 
be an accounting of the energetics for the orientation of 
the segment s and r - s  + 1 with respect to one another. 
This is accomplished by using the following matrix 
multiplication: 

p'_(s) = w'p(s) (28) 

where w_' is a M × M matrix having all zero off diagonal 
elements and having diagonal elements comprised of the 
following submatrix: 

=W~u b 

B L S L L 

L B L S L 

S L B L L 

L S L B L 

L L L L B 

L L L L S 

L 

L 

LI 
(29) 

L 

S 

B 

A component ofp'(s), p'(i,j, s), is the probability of finding 
the end ofa s-mefin layer i and that a next segment will go 
in the j direction. We note that in equation (29) the 
quantities B are located on the diagonal in contrast to 
their locations in equation (25). This is a result of the fact 
that, if there is a joining of two subchains shch that the last 
segment of the s subchain and the first segment of the 
r -  s + 1 subchain both 'come from' thejth direction, there 
must be an associated backfolding energy. As soon as the 
first or the last segment of the chain is involved in the 
composition we have to use a flexible connection. Anal- 
ogous to the modification in equation (25) we have to use 
L= B = S = 1/6 in equation (29) in this case. 

The density profile of melt is given by: 

6 
c~i=n/(Lp(r)pl) ~p ' ( i , j ,p ( i , j , r -s+l)  (30) 

s = l j = l  

S=s(41+s+b) L=l/(4l+b+s) 

and B=b/(41+s+b) (26) 

where s, l and b are Boltzmann weighting factors: 

s = exp( - eS/k T), 1 = exp( - J/k T), 

b = exp( - eb/k T) (27) 

(Naturally, when s = 1, r the elements of w' are all equal to 
1/6 as discussed above). 

It is clear that we can incorporate stiffness into the 
gambler's ruin analysis of the melt state. Following the 
derivation above, we need two end segment probability 
matrices. 

(1) The end segment probabilities of a chain starting in 
layer 1 which have a previous segment in layer 0. In this 
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case, the starting vector is pC(I), with pC(i,j, 1)=0 for all i 
and j  except pC(l,2, 1)= 1/6.-Since we know that there is a 
segment in the crystal, we do not have any flexible chain 
elements. The results are collected in pC. 

(2) The end segment probabilities of-a chain who does 
not pass any boundary. This quantity is found using the 
starting vector: p_f(1), ff(i,j, 1)=l/6 for i---1 . . . . .  M, 
j =  1 . . . . .  6 using the absorbing boundary conditions. We 
collect the results in ~. 

ntr~=pf(r)n/M (31) 

n~ilia = pr(1,2, s)2n/M (32) 

n~Op = pC(l, 2, s)(r - s - 1)n/M (33) 

nbndg~=pe(M,4,s)(r-s - 1)n/M (34) 
where 

M 6 
pr(r) = Z Zpr(i,J ,r) 

i = l j = l  

We note that there are no 2 terms in these expressions 
because they have been replaced by the use of the 
connection formula of equation (28). Again we have only 
calculated the chains emanating from the wall between 
layer 0-1 ; an equal number of loops, bridges and cilia will 
emanate from the wall between layers M - M + 1. 

The calculation of the volume fractions of cilia, loops, 
bridges and floating chains are analogous to the melt 
calculation just given. To find the adsorbed end segment 
probabilities, we use the starting vector pC(I), pC(i,j, 1) = 0 
for all i,j except for the p~(1, 2, 1) element-which equals Pl. 
Since there is actually a segment in the crystal, all of the 
r -  1 matrix multiplications of equation (5) (with equation 
(25) substituted for the 2 terms), use the h S, B values given 
in equation (26). The end segment probabilities of these 
chain types are denoted by pC(i, j, s). Secondly, we need the 
free end segment probabilities for chains which are not 
passing the boundaries. Using the adsorbing boundary 
conditions and the starting vector p_r(1), pf(i,j, 1) =p J6 for 
i=  1 ..... M and j = 1 ..... 6 we end up with the free end 
segment probability matrix pf. 

The volume fraction form--ulas for the different chain 
species are: 

c~°at= nrrce/(Lpr(r)p,) 

i ° x ~pr(i,j ,s)pf(i , j ,r-s+l) (35) 
s = l j = l  

r - 2  

~op = Z {n~°P/( Lpe(1, 2, s)pi) 
S=l  

6 
x i Z [Pe(i,j,s)P c( i , j ,k-s+l)]}  (36) 

k = t  j = l  

r - 2  

t~ r̀ dge = Z {nbriag=/LPe( M, 4, s)p,) 
S = M  

x i ~ [PC'(i,j,s)P c ( M - i + l ,  - j , k - s + l ) ] }  (37) 
k = l  j = l  

r - I  
(])cilia= ~ {ncsili~/(Lpe(s)pi) 

S= I  

x i ~, [P¢'(i,j,s)pf(i'j,k-s+l)]} (38) 
k = l  j = l  

where 

M 6 
pC(s)= ~ ~ pe(i,j,s) 

i=1 j = l  

The prime symbol is used above to indicate the use of 
equation (28). We note that in the case of a cilium, the k = s 
term in equation (38) uses B = L= S = 1/6, since one chain 
end is not fixed. 

After recalculating the density of the amorphous phase, 
the density is proven to be consistent without the need for 
iterations. 

RESULTS 

In this section we present a selection of the numerical 
results. All of the calculations we will discuss were 
performed using a cubic lattice (20 =2/3, 2_ 1 =21 = 1/6). 

We first focus our attention on the flexible chain case. 
Figure 3 gives the fraction of segments in loops, bridges, 
cilia and floating chains, as a function of the degree of 
polymerization r. Even for r = 3000 the cilia are still very 
important (contribution of 20~o). The limiting value of 
their average length is already reached and appears to be 

(cilium) = (M + 1)(M + 2)/2 (39) 

The fraction of end segments is 2/r, so the limiting fraction 
of segments in cilia is (M + 1)(M +2)/r. Therefore, r must 
be greater than 100(M + 1)(M +2) before cilia contribute 
less than 1~ to the amorphous region (if 
M = 2 0 ,  then r>40000).  

The limiting formula for the probabilities ptOOp and 
pb~Sc of finding a loop or a bridge, respectively, are 
derived by Guttman et al. s, via a gambler's ruin analysis. 
They also give the limiting values for the average loop and 
tail size, expressed in number of steps. The same values 
expressed in number of segments are one less and given by 

( loop)  = 2M + 1 (40) 

(br idge)  = M 2 + 2M (41) 

Our computations for r = 25 000 show a deviation of less 
than 0.5~o from these predictions. Qualitatively, equa- 
tions (40) and (41) are supported by Monte Carlo 
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Figure 3 Fraction of segments in F=floating chains, C=cilia, 
L= loops, B = bridges, as a function of the degree of polymeri- 
zation in the original melt. The wall distance M=20 
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calculations 14'1 ~. The duration of any walk is in agree- 
ment with Guttman et. al.8: 

F= 3 M (42) 

For smaller degrees of polymerization, bridges become 
less important. In particular when r < M 2, bridges will not 
contribute anymore to the amorphous phase. 
Alternatively, loops do contribute significantly even for 
r<M. This is due to the fact that most loops are very 
small, as we will see. 

Figure 3 also shows the behaviour of cilia. The fraction 
of segments in cilia goes through a maximum where r is in 
the order of M z. At this point, the cilia are the dominant 
chain species in the amorphous region, using up about 
50% of all the segments in the amorphous phase. At very 
small r, the floating chains are the most prevalent chain 
species but as r increases their presence decreases rapidly 
and when r > 2 M  2 there are no floating chains left. We 
note that the M z dependences stated above are a result of 
the random coil character of the chains. 

Figure 4 shows the calculated density profile of the 
amorphous region for M=20 ,  r=400. We see that the 
floating chains are located primarily in the centre of the 
system (in contrast to the supposition of Pettracone et 
al.~), while the loops stay close to the walls. The bridges 
have a higher density near the centre of the system and the 
cilia are not very close to the walls. Clearly, the total 
density profile is constant. 

Figure 5 gives the distribution of the chain lengths of the 
species making up the density profile of Figure 4. Note the 
multiplication factors in Figure 5 for the different chain 
species. Because of the relatively small degree of poly- 
merization, bridges are almost absent from the system. 
The bridges are very long as is shown and they have a 
rather symmetric distribution on the (log) plot of Figure 5. 
Instead, there are a great number of tight loops. Loops 
only 1 segment long make up about 20% of the total 
number of loops. This remarkable effect is also observed 
by Guttman, DiMarzio and Hoffman (GDH). The num- 
ber of cilia is limited to 2 per chain. They are, however, 
longer than the loops, but not as long as bridges. Their 
distribution is very broad. 

We now examine temperature effects on the corn- 
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Figure 4 Density profiles for the chain species: L-loop, C=cilia, 
F=floating chains, B= bridge. The degree of polymerization of the 
original melt was r=400 and the wall distance M=20 
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Figure 5 Distribution of lengths of L-loops, B bridges, 
C=cilia. For 1, flexible chains; 2, no backfolding; 3, stiff chains 
(A~:/k=300 K and T0=150 K) r=400, M=20. Multiplication 
factors used: loops: 10×, bridges {(B 1 and B2): 104×; B3: 103x}, 
cilia: 102× 

position of the amorphous phase by incorporating the 
stiffness effects into the chain. We presume different 
crystallization temperatures To for a given hypothetical 
polymer. In all cases, we will use B=0 ,  so that the 
probability of segment backfolding is zero. Only the 
energy difference Ae=(e~-#) is relevant for the 
probability of an L-shape or an S-shape conformation. 

l l 
S=  1 +4e ~/kr0; L= 4 + e+a~/kr° (43) 

Let us first choose To= oo. This is equivalent to Ae =0  
which is similar to the flexible chain case except that 
backfolding is prohibited. Figure 5 shows the length 
distribution of the loops, bridges and cilia. 

We first compare the no backfolding case with the 
flexible case. Of course, one-segment loops do not occur 
when backfolding is prohibited but it is remarkable that 
the only effect of B = 0 is to shift the loop distribution by 
about one segment without altering the shape of the curve. 
Even more interesting are the differences in the cilium and 
bridge length distributions. The average lengths of the 
bridges are about the same, or a bit smaller, but their 
numbers are three times greater. There are also more 
(short) cilia. Furthermore, the number of floating chains 
decreases about 50% (not shown in Figure 5). These effects 
are rather dramatic in nature, showing that backfolding 
does influence the lattice calculations in many cases. 
However, rescaling of the system largely compensates 
these effects as will be discussed below (Figure 6). 

Fioure 6 is a plot of the fraction of segments in loops, 
bridges, cilia and floating chains as a function of the 
logarithm of the absolute temperatures before crystal- 
lization for the case of Ae/k=300 K and for some 
combinations of r and M. The actual choice of Ae is not 
important, and will not alter the shapes of the curves in 
Figure 6. A change in Ae will only cause a translation on 
the temperature axes. We see at least three distinct 
regimes in Figure 6. 

(1) T O < T* (see Figure 6a). 
The results in this regime are lattice dependent ar- 

tefacts. We will therefore not discuss this except to say that 
the results are predictable: 2/3 of the chains are floating 
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L = loops; B = bridges as a function of the crystallization 
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chains parallel to the surface while the rest are bridges and 
(a small number of) cilia. 

(2) T* < To< Tg 
The next temperature which is relevant is the glass 

transition temperature Tg"½Ae/k. Below this tem- 
perature, chains cannot rearrange and as a result they will 
not be able to adopt the predicted equilibrium chain 
distribution of the gambler's ruin analysis. Therefore in 
this temperature range, our results are not meaningful. 

(3) T o > T~ is the temperature range which is relevant in 
practice. Starting from T* we observe that floating chains 
will be more prevalent when the temperature before 

crystallization is higher. Near T* there are almost no 
floating chains due to the expanded dimensions of 
random coils at lower temperature. Similarly, it is expec- 
ted that the fraction of bridges will be lower when this 
temperature increases. The loops and cilia do show more 
remarkable effects. This can be explained with the help of 
Figure 5. In this Figure, the distribution of loops, bridges, 
cilia and floating chains is given for To near 
T*(T o = 150 K, Ae/k = 300 K). The average loop length is 
twice the length at To--~oo. In particular there is a fivefold 
decrease in the number of small loops. We observe an 
oscillation in number ofsmall loops of length less than ten. 
As expected, we see a big difference in the bridge 
behaviour at To=150K as compared with To---~oo. 
Bridges are 10 x more abundant, and their average length 
is smaller. 

Returning to Figure 6 we now can explain the max- 
imum in the fraction of segments in loops at To ~ 100 K. 
Two antagonistic effects, growth in the average length of 
loops and lowering of the numbers of loops, are acting 
simultaneously. The cilia behave differently because the 
total number of cilia is fixed at two whilst the average 
length of a cilium can differ as a function of temperature. 
The way this happens is dependent on the degree of 
polymerization. As shown in Figure 6a the cilia fraction 
goes through a maximum at To ~200 K. However, when 
r > 400 this maximum is not present and the fraction of 
cilia is a continuous growing function of the 
crystallization temperature. The maximum found for cilia 
for r<400 is in agreement with the results of Figure 3, 
where a maximum for the cilia fraction was also found. 
The following discussion about rescaling the system will 
make this behaviour more understandable. Figures 6b 
and 6c show curves which are similar to Figure 6a. The 
system in Figure 6c (M = 20, r = 400) is twice as big as that 
in Figure 6b (M = 10, r = 200). Figures 6b and 6c illustrate 
the principle that a system of nonflexible chains can be 
rescaled to a smaller system of more flexible chains. 
T1 - T~, T2 - T~, Ta - T~ are typical examples where both 
systems have identical fractions of segments in loops, 
bridges, cilia and floating chains. Also the profiles of those 
chain species at corresponding temperatures (T~ - T~ etc.) 
are similar (not indicated in the Figure). This rescaling 
phenomena agrees with observations of Guttman et al.15. 

Finally, we note that polydispersity is simulated by a 
super-position of different monodisperse chain length 
calculations. The results can therefore be discussed using 
Figure 3. During the instantaneous crystallization, a 
longer chain will be passing a boundary more often than 
does a small chain (and therefore will be divided into 
loops, bridges or cilia). The result is that floating chains, if 
present in the amorphous phase, will be short. 

In the following subsections we will examine the 
properties of the amorphous phase as discussed above in 
more detail. Bond orientation and deformation will be 
discussed. 

CALCULATION OF BIREFRINGENCE AND 
DIELECTRIC PROPERTIES 

The calculation of the optical and electrical characteristics 
of the chains in the amorphous regions of the melt 
crystallized semicrystalline polymer requires knowledge 
of the orientation of the segments of the confined chains. 
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The matrix formulation we are using provides the nec- 
essary information quite readily. We can show the general 
procedure for floating chains here. The total number of 
segment-segment bonds is ( r -  1)n/L. A bond parallel to 
the plane is found when two adjacent segments are in a 
same layer: 

?'/;tO r -  1 
= Z p(i ,s)p(i ,r--s)  (44) 

dPiP"r Lp(r) ~= x 

The fraction of segments parallel and perpendicular is 
measured by birefringence and calculated by: 

L M 
fpa,= ~ ~b[ ~ (45) 

n ( r -  l) i= 1 

So 

f par 

f ~ r =  1 - f ~ '  (46) 

i ' f  ;to p(i, s)p(i, r -  s) (47) 
( r -  1)p(r) i= 1 s= 1 

There seems to be an influence of the lattice in equation 
(47), since 20 is in this equation. For  instance, for cubic 
lattices ;t o = 2/3 and for hexagonal lattices ;to = 1/2. The 
latter one has no orthogonal bonds, and therefore fr-r  as 
given by equation (47) and f~ r  from equation (46) can be 
corrected by decomposition into real parallel and perpen- 
dicular parts to fit experimental quantities. It is simple to 
show that for isotropic lattices the result will be lattice 
independent. 

CALCULATION OF D E F O R M A T I O N  
PROPERTIES 

The theoretical model that we are using can be used to 
examine the role of the amorphous component of a 
semicrystalline polymer in the overall stress-strain be- 
haviour of the material. We can model several very 
interesting reversible and irreversible deformation pro- 
cesses with our  method. Both types of processes will result 
in a change in both the overall density and the density 
profile of the amorphous region as the surface separation 
is changed, depending on the value of the X parameter. In a 
reversible deformation process, this may occur as a result 
of the migration of floating chains from between a pair of 
crystal lamellae, which are being brought together by the 
deformation, to between a pair of crystal lamellae which 
are being separated by the deformation. In this case, we 
have an open system for the floating chains which affects 
the free energy. (We will come back to this point later). In 
an irreversible deformation process, this may occur as a 
result of taut bridges either increasing their contour 
length by pulling segments out of the crystalline regions to 
which they are attached or by breaking into cilia (the 
break occurring either at the crystal surfaces or randomly 
along the bridge's contour length). The irreversible 
process can result in hysteretic stress-strain behaviour, 
such as Mullins effect, permanent set or even in failure via 
crack and craze propagation. 

We must, however, be cautious in our analysis of the 
deformation behaviour of our system because: 

(1) We cannot pinpoint the exact locations of the end 
segments of loops and bridges in our treatment. 

(2) We do not consider the deformation role played by 

polymer amorphous phase: F. A. M. Leermakers et al. 

the entanglements which concentrate in the amorphous 
regions. 

(3) We do not consider structural changes that may 
occur within the crystalline regions. 

We nevertheless expect to obtain valuable information 
on the behaviour of the system. Whenever the resulting 
distribution of segments is nonuniform, a distribution of 
weighting factors p~ results from equation (7) and a 
selfconsistent density is to be formed via iterations. The 
free energy of the system is discussed in Appendix A. 

As will be clear to the reader, we can model numerous 
interesting phenomena. Only a selection of our results are 
presented in this paper. We used a relatively small system, 
M =  10, r =  100 and a q~melt=0.95, on a cubic lattice to 
demonstrate interesting deformation properties. The 
gambler's ruin analysis discussed previously was used to 
calculate the chain population for the amorphous phase 
of an instantly melt-crystallized polymer. Since r,> M, 
floating chains are almost absent. Therefore we decided to 
treat our system as closed (i.e., no mass transfer). No 
floating chains can diffuse in or out of the system. We also 
like to limit our analysis to totally flexible chains and 
therefore, we will not examine temperature effects. 
Another assumption we are incorporating into our system 
is that any bridges which were fully elongated during 
deformation are randomly changed into 1 or 2 cilia. There 
is one interesting parameter whose value is left to choice: 
the interaction parameter Z. The value for this parameter 
depends on the polymer, but it is always very high, Z >> X0. 
This can be shown to be intuitively correct by pointing out 
that the melt, which is in equilibrium with the air, has an 
extremely high density. In other words there is a phase 
transition, air-polymer, therefore ~>)6~. Unfortunately, 
for very high ~ values, the calculations are very difficult. 
To understand the properties of our system we must study 
its behaviour for different ;( values. One can imagine that 
we replace the holes by solvent molecules which lowers 
the X value. This step of convenience will as a side benefit 
give us insight into the swelling behaviour of the system. 
For  r =  100, the Z0~0.6. Figures 7a and 7b show the 
density profile during deformation for Z = 0  and ~(= 1 
respectively. The difference between Figures 7a and 7b is a 
remarkable one. When X<~(0, the density profile is 
relatively flat whilst when X>;(0 there is a greater 
variation and necking takes place at higher wall 
separations. The higher the ~( value the more profound the 
necking process. (The broken curves in Figure 7b are less 
accurate). 

Firstly we will discuss the birefringence predictions. 
Figure 8a shows the total fraction of bonds parallel to the 
surfaces, fpar, as a function of the deformation AM for 
various X values. As in Figure 7, there is again a 
remarkable difference in the curves for X < Z0 and X > Z,. 
For  7. <;(0 the curves decrease monotonically, while for 
X>Xo there is a minimum in the curve. This minimum 
represents the wall distance at which necking begins. The 
higher the Z value the smaller AM to find this minimum 
distance. How can this minimum be explained? The 
unperturbed amorphous region had no net orientation. 
As soon as deformation begins, the chains are stretched 
and the number of segment bonds parallel to the surfaces 
must therefore decrease. When the interaction parameter 
is weak, Z < Xo, this process will continue until the system 
breaks, but when the interactions are strong, Z > Zo, the 
introduction of holes (or solvent) into the system is very 
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unfavourable! Therefore the chains tend to have a high 
density near the walls and a low density in the centre. This 
is an active response of the chains to the deformation and 
again results in a higher number of segment bonds parallel 
to the surfaces. Figure 8b shows the free energy as a 
function of deformation for different Z values. We see that 
the curves for high X values level off faster than for low Z 
values. Therefore, the high Z value curves probably start 
off steeper than the low Z value curves, indicating that the 
material is harder to deform. At low Z values (good 
solvents) the system is much more elastic in character and 
the material becomes soft. Whan happens to the free 
energy after necking starts is not known. 

To illustrate the individual behaviour of loops, bridges, 
cilia and floating chains during deformation, we have 
plotted the density profiles for three wall distances in 
Figure 9 : M = 1 0  (unperturbed), M = 1 5  (just before 
necking) and M = 19 (after necking). Figure 9 is for the 
case X = 1, but we note that the behaviour of the chain for 
all Z values up to the start of necking during deformation 
is more or less the same. 

Figure 9a shows that the loops are almost inactive. This 
is because most of the loops are very small. All the other 
chains are more deformationally active. Since necking 
occurs when M =  19, all of the chains must have a dip in 

their density profiles. The most profound change in the 
density profile is found for the floating chains. They desert 
the centre region completely and choose one of the two 
sides of the system. Bridges must cross the centre of the 
system, and therefore they do not display a similar change 
in their profile (Figure 9b). They will however, show a 
deeper dip in the profile in systems where more (longer) 
bridges are present. 

Cilia react upon deformation by retracting in their tails. 
In the M = 19 system, the cilia hardly ever cross the centre 
of the system. 

The most important conclusion from our deformation 
calculations is that the deformation of the amorphous 
phase is more energetically than entropically controlled. 
We saw that at very high Z value a necking process sets in 
at small deformations. 

CONCLUSIONS 

For an instaneous melt crystallization process, we are able 
to analyse the amorphous phase of a semicrystalline 
polymer system in terms of the gambler's ruin analysis for 
chains of finite length. It appears that a large fraction of 
the segments belong to cilia and floating chains, even for a 
rather high molecular weight polymer. By incorporating 
chain stiffness into the model we see that backfolding can 
alter our results significantly, but the principle of rescaling 
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Figure 9 Individual response of the chain species on 
deformation, for (1) M= 10; (2) M= 15; (3) M= 19. (Again there 
can be a small error for M= 19) (a) Profile for the loops, L, and 
cilia, C, given for one wall. (b) Profile for the bridges, B, from 
both walls (right hand axis) and that for floating chains, F (left 
hand axis) 

of statistical chain elements nearly compensates for the 
differences. In studying deformation we find that it is 
energetically rather than entropically controlled. We find 
I> x0 values caused a necking process while low x values 
(swelling) make the material soft and flexible. 

APPENDIX A 

Free energy in melt and amorphous phase 
As a final result of self consisting computer calculations, 

the free energy, interaction energy and entropy can be 
evaluated. Scheutjens and Fleer (SF) derive the free energy 
from their canonical function Q(M, L, T, {nC}) for an 
arbitrary but specified set of conformations {n,}. Their 
analysis is for a polymer system in equilibrium with a bulk 
solution. The SF result is: 

F 
---=If.ln4* 

kTL L 
M 

+ 1 (40 In 4:-4i In pi) + U/kTL (Al) 
i=l 

where UlkTLis the interaction energy given by: 

642) 

and (b, is the volume fraction far away from the walls 
(bulk). While +*=(rn/Lp(r)), equation (Al) can be re- 
written for a closed system. 

F _-=If-In?!- 
kTL L Lp(r) 

+ 2 (40 in 40 +4i In pi) + U/kTL (A3) 
i=l 

When x$=0 and when reflecting boundaries are used, 
equation (A3) is the free energy for an M-layer melt 
system. Let us now examine the first term of equation (A3) 
closely. Clearly this is the important term for the amor- 
phous phase. We write 

!&L!L_ n Inn +nlnr 
L Lp(r) L Lp(r) L 

(A4) 

The last term in (A4) is a normalization term. The first 
term is more interesting. The argument (n/Lp(r)) is the 
quotient of: the number of chains per lattice site divided 
by the probability of finding an r-mer in the system. In the 
melt pi = 1, p(r) = M and (n/Lp(r)) = n/LM. Realizing that 
the free energy for our amorphous phase and the identical 
portion of the melt must be the same and 

because of the conservation of segments, leads to the 
following formula for the free energy for the amorphous 
phase of a semicrystalline polymer system: 

+$ Tin 
[ 

100p 

” 
J!JP(lOOP, 4 

cilium 
4 

cihm 

----In ns 
+ L Lp(cilium, s) 

nbridge 

s In 
nbridge 

+ L Lp(bCidge, s) 1 
+Flnr+ t (~~ln~~+~ilnpi)+U/kTL (A6) 

i=l 

where 

p(free)= E p’(i, r) (A7) 
i=l 

p(loop,s)=p”(l, s)l_,A,(r--s- I)*2 (A8) 

p(cilium, s)=p’(l,s)*lr*2*2 (A9) 

p(bridge,s)=p’(M,s)*~_,~_,(r--s-1)*2 (AlO) 

In (A8-AlO) we added extra factors of 2 to account for 
both walls (see equations (15) (16) (18) (19)). It is easy to 
check that, as long as the amorphous phase is un- 
perturbed, equations (A6) and (A3) give the same results. 
During deformation, the number of chainparts will be 
constant, only the p-values in equation (A6) will change. 

Finally we examine temperature effects on the free 
energy expression. Analogous to the discussion above we 
can replace the first terms in (A6) by: 

“xln L 
L Lp(x)Tt etc. (All) 
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where x stands for a specified chain species. The super- 
script T~ is the current temperature. Again when the 
temperature changes, the reference number of chain 
species x in the argument will remain constant. 

2 - 1 =  

APPENDIX B 

Computational tricks 
Many calculations can be optimized. We will briefly 

discuss two of the most important tricks. The volume 
fractions are calculated by: 

q~,= ~,, norm(s) ~ p ( i , k ) p ( i , s - k + l )  
S = I  k = $  

(m)  

While p(i, s - k + l ) = 0  if k > s ,  the summations can be 
rearranged: 

~b,= ~ ~. p ( i , s ) n o r m ( k ) p ( i , k - s + l )  (B2) 
s = l  k = s  

o r :  

dpi= ~,, p(i, s)pinV(i, r - s +  1) (B3) 
S--1 

The p=mv matrix can now be calculated by the 
recurrence relation: 

pinY(i, s) =pi[2-1 Pin'( i -  1, s--  1) 

+20pin'(i, s-- 1) + 21 pmv(i + 1, s-- 1) 

+norm(r - -  s + 1)] (B4) 

This reduces the number of calculations significantly. 
Secondly, the stiffness calculations can be reduced. As 

can be proven by induction, the 6 x 6 matrices can be 
replaced by 3 x 3 matrices, while bonds in the plane are 
indistinguishable. So equation (25) and (29) can be 
replaced by: 

1 4L l ° 0 20 = 2 L + B + S  

0 0 

;~ +,  = 0 ( B 5 )  

4L 

W~ub = 2L+ B + S (B6) 

4L 

The direction in the plane is four fold degenerated. This 
has some consequences for the volume fraction 
calculations. 
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